Рефераты - Афоризмы - Словари
Русские, белорусские и английские сочинения
Русские и белорусские изложения
 

Фотоэлектрический преобразователь

Работа из раздела: «Коммуникации, связь, цифровые приборы и радиоэлектроника»

/

Содержание

1.Введение

2.Устройство и принцип действия

3.Физический эффект работы

4.Рабочие характеристики и праметры

5.Конструктивно-технологические решения ФЭП на основе монокристаллического кремния

6.Перспективы развития

7. Список источников

1.Введение

Фотоэлектрические преобразователи (ФЭП) - электронный прибор, который преобразует энергию фотонов в электрическую энергию. Первый фотоэлемент, основанный на внешнем фотоэффекте, создал Александр Столетов.

Фотоэлектрический (или фотовольтаический) метод преобразования солнечной энергии в электрическую является в настоящее время наиболее разработанным в научном и практическом плане. Впервые на перспективу его использования в крупномасштабной энергетике обратил внимание еще в 30-е годы один из основателей советской физической школы академик А. Ф. Иоффе. Однако в то время КПД солнечных элементов не превышал 1%.

Современные тенденции в мировой энергетике стимулируют существенный рост интереса к альтернативным источникам энергии. ФЭП или солнечные элементы являются наиболее перспективными, экологически чистыми кандидатами на уменьшение нефтяной зависимости мира и, в отличие от органических и неорганических источников энергии, преобразуют солнечное излучение непосредственно в электроэнергию.

Солнце - самый мощный источник энергии по сравнению со всеми другими, доступными человеку. Полная мощность солнечного излучения выражается огромной цифрой: 4x1026 Вт, или 4x1014 млрд. кВт. Эта цифра настолько велика, что трудно выбрать для сопоставления с ней какую-либо подходящую величину, привычную для нас в наших земных масштабах. Даже вблизи Земли, на расстоянии около 150 млн. км от Солнца, на каждый квадратный метр поверхности, расположенной перпендикулярно солнечным лучам, приходится 1,4 кВт лучистой энергии.

Средний радиус Земли равен 6370 км, а поперечное сечение Земли составляет 127,6x106 км2. Легко подсчитать, что полная мощность солнечной радиации, поступающей на Землю, равна 178,6x1012 кВт. Из этого следует, что в течение года на Землю в виде лучистой энергии передается 1,56x1018 кВтxч.

Как уже сказано, на 1 м2 поверхности Земли, расположенной перпендикулярно солнечным лучам, приходится 1,4 кВт солнечной радиации, а на 1 м2 поверхности Земли (сферы Земли) приходится в среднем 0,35 кВт.

Следует, однако, иметь в виду, что больше половины энергии солнечной радиации не доходит непосредственно до поверхности Земли (суши и океана), а отражается атмосферой. Считается, что на 1 м2 суши и океана земли приходится в среднем около 0,16 кВт солнечной радиации. Следовательно, для всей поверхности Земли солнечная радиация составляет величину, близкую к 1014 кВт, или 105 млрд. кВт. Эта цифра, вероятно, во многие тысячи раз превышает не только сегодняшнюю, но и перспективную потребность человечества в энергии.

ФЭП широко используются для питания магистральных систем электроснабжения и различного оборудования на КЛА; они предназначены также для подзарядки бортовых химических аккумуляторных батарей. Кроме того, ФЭП находят применение на наземных стационарных и передвижных объектах, например, в АЭУ электромобилей. С помощью ФЭП, размещенных на верхней поверхности крыльев, осуществлено питание приводного электродвигателя винта одноместного экспериментального самолета (США), совершившего перелет через пролив Ла-Манш.

В настоящее время предпочтительная область применения ФЭП - искусственные спутники Земли, орбитальные космические станции, межпланетные зонды и другие КЛА.

Достоинства ФЭП:

-большой срок службы;

-достаточная аппаратурная надежность;

-отсутствие расхода активного вещества или топлива.

Недостатки ФЭП:

-необходимость устройств для ориентации на Солнце;

-сложность механизмов, разворачивающих панели ФЭП после выхода КЛА на орбиту;

-неработоспособность в отсутствие освещения;

-относительно большие площади облучаемых поверхностей.

2.Устройство и принцип действия

Фотоэлемент, основанный на внешнем фотоэффекте, состоит из стеклянной колбы, из которой откачан воздух (так называемые вакуумные фотоэлементы).

Внутренняя поверхность покрыта слоем светочувствительного материала и является источником электронов - фотокатодом (ФК.). В передней стенке колбы часть ее поверхности, не покрытая фоточувствительным слоем, служит окошком, сквозь которое свободно проходят лучи света внутрь фотоэлемента. В центре колбы на ножке укреплено металлическое кольцо- анод, к которому подводится положительное напряжение.

Электроны, вылетевшие из поверхности фотокатода под действием упавшего на него света, притягиваются электрическим полем анода и создают фототок внутри фотоэлемента и электрический ток в цепи, в которую включен фотоэлемент.

3.Физический эффект работы

Работа ФЭ основана на внутреннем фотоэлектрическом эффекте в полупроводниках. При любом способе производства электричества необходимо иметь электрические заряды и обеспечить механизм их разделения. В индукционном методе для получения электричества используют свободные заряды металлических проводников, а их разделение осуществляется в результате перемещения проводников в магнитном поле.

В фотовольтаическом методе получения электричества нет механических перемещений деталей конструкции. Он основан на свойствах полупроводниковых материалов и их взаимодействии со светом. В фотовольтаическом элементе свободные носители образуются в результате взаимодействия полупроводника со светом, а разделяются под действием электрического поля, возникающего внутри элемента. Таким образом, поглощение света в идеальном полупроводнике приводит к появлению электрон-дырочной пары, которая существует в полупроводнике некоторое время, определяемое временем жизни, которое в свою очередь зависит от структурного совершенства полупроводникого материала. Процесс аннигиляции электро-дырочных пар называется рекомбинацией.

Не всякое излучение из светового диапазона вызывает генерацию электрон-дырочной пары, а только то, чья энергия достаточна чтобы разрушить связь электрона с ядром атома. Поэтому не все полупроводники являются чувствительными к солнечному излучению в наземных условиях.

Как и в любом источнике электропитания на его выходе поддерживается постоянная разность потенциалов, которая при подключении его к внешней нагрузке вызывает протекание тока в цепи.

Таким образом, генерированные электрон-дырочные пары необходимо разделить. Разделение положительных и отрицательных зарядов происходит в результате фотоэлектрического эффекта. Фотоэлектрический эффект возникает в полупроводниковых диодных структурах при наличии в них энергетического барьера который осуществляет разделение отрицательных и положительных носителей заряда. Энергетический барьер большинства ФЭП представляет собой встроенное электрическое поле, возникающее на границе двух полупроводниковых материалов, отличающихся типом электропроводности (электронной - n-тип и дырочной - р-тип). При поглощении фотонов происходит генерация неравновесных электрон-дырочных пар, разделение которых встроенным электрическим полем приводит к формированию фото-э.д.с, которое существует до тех пор пока полупроводниковая структура освещается светом.

Внешние радиационные (световые, тепловые ) воздействия обуславливают в слоях 2 и 3 появление неосновных носителей зарядов, знаки которых противоположны знакам основных носителей р- и п-областях. Под влиянием электростатического притяжения разноименные свободные основные носители диффундируют через границу соприкосновения областей и образуют вблизи нее р-п гетеропереход.

Гетеропереход -- контакт двух различных полупроводников. Гетеропереходы обычно используются для создания потенциальных ям для электронов и дырок в многослойных полупроводниковых структурах.

Как говорилось выше, свободные основные носители через границу соприкосновения областей и образуют вблизи нее р-п гетеропереход с напряженностью электрического поля ЕК , контактной разностью потенциалов:

UK = sEK

и потенциальным энергетическим барьером:

солнечный электрический фотоэлемент преобразователь

WK=eUK

для основных носителей, имеющих заряд е.

Напряженность поля EK препятствует их диффузии за пределы пограничного слоя шириной S . Напряжение Uk равное:

зависит от температуры Т, концентраций дырок или электронов в p- и n-областях заряда электрона е и постоянной Больцмана k. для неосновных носителей EK - движущее поле. Оно обусловливает перемещение дрейфующих электронов из области р в область п, а дырок - из области п в область р. Область п приобретает отрицательный заряд, а область р- положительный, что эквивалентно приложению к р-п переходу внешнего электрического поля с напряженностью EВШ, встречного с EK. Поле с напряженностью EВШ - запирающее для неосновных и движущее для основных носителей. Динамическое равновесие потока носителей через р-п переход переводит к установлению на электродах 1 и 4 разности потенциалов U0 - ЭДС холостого хода ФЭ. Эти явления могут происходить даже при отсутствии освещения р-п перехода. Пусть ФЭ облучается потоком световых квантов (фотонов), которые сталкиваются со связанными (валентными) электронами кристалла с энергетическими уровнями W.

Если энергия фотона:

Wф=hv

где v -частота волны света, h - постоянная Планка больше W, электрон покидает уровень и порождает здесь дырку; р-п переход разделяет пары электрон - дырка, и ЭДС U0 увеличивается. Если подключить сопротивление нагрузки RН, по цепи пойдет ток I, направление которого встречно движению электронов. Перемещение дырок ограничено пределами полупроводников, во внешней цепи их нет. Ток I возрастает с повышением интенсивности светового потока Ф, но не превосходит предельного тока In ФЭ, который получается при переводе всех валентных электронов в свободное состояние: дальнейший рост числа неосновных носителей невозможен. В режиме К3 (RН=0, UН=IRН=0) напряженность поля Евш =0, р-п переход (напряженность поля ЕК) наиболее интенсивно разделяет пары неосновных носителей и получается наибольший ток фотоэлемента IФ для заданного Ф. Но в режиме К3, как и при холостом ходе (I=0), полезная мощность P=UНI=0, а для 0<UН<U0 и 0<I<IФ будет Р>0.

4.Рабочие характеристики и праметры

Реальные условия работы фотоэлектрических преобразователей (ФЭП) связаны с периодическим воздействием на приборные структуры различных внешних неблагоприятных факторов, приводящих к деградации эксплуатационных характеристик ФЭП. На стадии проектирования и разработки новых конструкций ФЭП важно максимально полно уменьшить негативное влияние внешних факторов и, учитывая это, оптимизировать конструкцию фотопреобразователя. Определение величины этих потерь, с одной стороны, позволяет установить причину снижения коэффициента полезного действия (к.п.д), с другой - совершенствовать технологию изготовления ФЭП.

Баланс подводимой к p-n- переходу ФЭП и отводимой от него энергии может быть представлен в виде:

(1)

где Eg - ширина запрещенной зоны полупроводника, Nc и Nv - эффективные плотности состояний у краев зон проводимости и валентной, соответственно; Iф=Iкз - ток короткого замыкания, Iн, Uн - ток и напряжение на нагрузке, соответствующее максимальной электрической мощности Pэл.max, отдаваемой образцом ФЭП.

где A - const, Io - ток насыщения.

В соответствии с выражением (1) подводимая энергия излучения, теряемая и отводимая электрическая энергия представляется в виде диаграммы Кривая на рисунке ниже представляет собой нагрузочную характеристику

Прямоугольники 1 и 2 соответствуют энергетическим потерям на нагрев контактов, 3 - потери энергии в области p-n перехода, 4 - полезная отводимая электрическая энергия, 5 - потери при рекомбинации электронно - дырочных пар при протекании темнового тока. В сумме площадь всех прямоугольников соответствует энергии подводимого излучения .

Таким образом, определение нагрузочной характеристики на устройстве позволяет установить соотношение компонентов энергетических потерь, а изменение этого соотношения при различных уровнях освещенности и различных температурах образца ФЭП - анализировать причины и оптимизировать конструктивное исполнение ФЭП.

Темновая вольт-амперная характеристикам ФЭП подобна ВАХ обычного полупроводникового диода. Если ФЭП осветить светом его ВАХ измениться. Нагрузочной световой ВАХ фотопреобразователя является зависимость тока нагрузки Iн, протекающего через сопротивление Rн подключенной к клеммам освещаемого ФЭП внешней нагрузки, от падения напряжения Uн на этом сопротивлении при монотонном изменении величины Rн от нуля до бесконечности. Из зависимости Iн =f(Uн) могут быть получены и рассчитаны выходные параметры: напряжение холостого хода Uхх, ток короткого замыкания Iкз, фактор заполнения FF, максимальная электрическая мощность Рнмах.

Коэффициент полезного действия з:

где W - мощность падающего светового потока; Uхх- напряжение холостого хода; Iкз - ток короткого замыкания, FF - фактор заполнения световой ВАХ.

Максимальные значения КПД фотоэлементов и модулей, достигнутые в лабораторных условиях

Тип

преобразования, %

Тип

преобразования, %

Кремниевые

CdTe (фотоэлемент)

16,5

Si (кристаллический)

24,7

Аморфный/Нанокристаллический кремний

Si (поликристаллический)

20,3

Si (аморфный)

9,5

Si (тонкопленочная передача)

16,6

Si (нанокристаллический)

10,1

Si (тонкопленочный субмодуль)

10,4

Фотохимические

III-V

На базе органических красителей

10,4

GaAs (кристаллический)

25,1

На базе органических красителей (субмодуль)

7,9

GaAs (тонкопленочный)

24,5

Органические

GaAs (поликристаллический)

18,2

Органический полимер

5,15

InP (кристаллический)

21,9

Многослойные

Тонкие пленки халькогенидов

GaInP/GaAs/Ge

32,0

CIGS (фотоэлемент))

19,9

GaInP/GaAs

30,3

CIGS (субмодуль)

16,6

GaAs/CIS (тонкопленочный)

25,8

Эффективность работы фотоэлектрического преобразователя зависит от оптических и электрофизических свойств полупроводникового материала:

1. Коэффициента отражения света от поверхности полупроводника, чем больше света

проникает вглубь базового слоя тем выше к.п.д.

2. Квантового выхода полупроводника, который показывает отношение числа поглотившихся фотонов к числу генерировавшихся при этом электронов. Этот коэффициент всегда меньше единицы так как часть фотонов поглощается на различных структурных несовершенствах полупроводника, что не приводит к генерации электрон-дырочной пары.

3. Диффузионной длины носителей заряда, которая должна обеспечить возможность

диффузии пар к энергетическому барьеру, на котором происходит их разделение. Соотношения между диффузионной длиной носителей заряда, глубиной залегания p-n-перехода относительно освещаемой поверхности и толщиной находящегося за ним полупроводникового слоя должно быть совместно оптимизировано.

4. Спектрального положение основной полосы поглощения солнечного излучения

5. От выпрямляющих характеристик p-n-перехода, которые определяют эффективность разделения носителей заряда.

6. Степени легирования областей полупроводника по обе стороны p-n-перехода, что

совместно с требованием минимизации сопротивления других слоев ФЭП, формы и места расположения токосъемных контактов обеспечивает низкое внутренне последовательное электросопротивление источника тока.

5.Конструктивно-технологические решения ФЭП на основе монокристаллического кремния

По своему конструктивно-технологическому решению фотоэлектрические преобразователи представляют собой наукоемкие изделия электронной техники. Самыми распространенными, надежными и долговечными являются ФЭП на основе монокристаллического кремния, которые впервые были применены десятки лет назад для электроснабжения космических аппаратов. В 2000 году было выпущено ФЭП на основе монокристаллов общей мощностью 200 МВт для наземного применения.

Желание примирить часто взаимно исключающие требования и найти оптимальное

компромиссное техническое решение привело разработчиков к выбору исходной конструкции ФЭП, изображенной на рисунке ниже. Для фотоэлектрических преобразователей из монокристаллического кремния с гомогенным p-n-переходом, занимающих в настоящее время ведущее положение при применениях, как в космических, так и в наземных условиях, такой конструктивный подход, оптимизируемый под конкретные применения, используется наиболее часто.

/

6.Перспективы развития

Высокая цена установок определяется высокой стоимостью солнечных модулей. При производстве монокристаллических кремниевых ФЭП затрачивается такое количество энергии и труда, которое не окупится в течение всего времени их эксплуатации (20-25 лет). В то же время ФЭП на основе поликристаллической кремниевой ленты являются достаточно коммерчески привлекательными, несмотря на более низкие значения к.п.д., так как в течение их эксплуатации они вырабатывают электроэнергии значительно больше, чем было затрачено на их производство.

По мнению большинства ученых наиболее перспективными для наземного использования являются тонкопленочные ФЭП, низкая стоимость которых при массовом производстве и при достаточной эффективности определяется уменьшением толщины ФЭП в 100 раз. Наибольшую эффективность демонстрируют солнечных элементы на основе пленок полупроводниковых поликристаллических соединений Cu(In,Ga)Se2, CdTe толщиной порядка нескольких мкм и пленок гидрогенизированного аморфного кремния aSi:H.

7. Список источников

1. Андреев В.М., Грилихес В.А., Румянцев В.Д. «Фотоэлектрическое преобразование концентрированного солнечного излучения»

2. Шутов С.В., Аппазов Э.С., Марончук А.И. «Испытание фотоэлектрических преобразователей в условиях экстримальных температурных колебаний»

3. http://ru.wikipedia.org

4. http://www.solar-odessa.com.ua/rus/documents/tech/photovoltage.pdf

ref.by 2006—2019
contextus@mail.ru