Рефераты - Афоризмы - Словари
Русские, белорусские и английские сочинения
Русские и белорусские изложения
 

Электроснабжение ремонтно-механического цеха

Работа из раздела: «Разное»

  ГОСУДАРСТВЕННЫЙ КОМИТЕТ РОССИЙСКОЙ ФЕДЕРАЦИИ ПО СТРОИТЕЛЬСТВУ И ЖИЛИЩНО-
                           КОММУНАЛЬНОМУ КОМПЛЕКСУ

                      КРАСНОДАРСКИЙ МОНТАЖНЫЙ ТЕХНИКУМ



      Специальность: Монтаж, наладка и эксплуатация электрооборудования
                      предприятий и гражданских зданий.


                Электроснабжение ремонтно-механического цеха

                            ПОЯСНИТЕЛЬНАЯ ЗАПИСКА
                             КМТ 3-КП-001-4Э  ПЗ



Руководитель проекта
Студент гр. 4Э
В.С.Малиновский
Лебедев А.Н.

Нормоконтроль
В.С.Малиновский


                               Краснодар- 2001


                                 Содержание.

  Введение.
1. Исходные данные для проектирования, характеристика объекта.
2.  Выбор  схемы  электроснабжения.  Схема  силовой  распределительной  сети
напряжением 0,38 кв. Выбор комплексного оборудования.
3. Расчет электрических нагрузок.
 3.1 Расчет эл.нагрузок силового оборудования на напряжении 0,38 кв.
 3.2 Расчет нагрузок электрического освещения.
 3.3. Расчет электр. нагрузок по объекту.
4. Расчет силовой, питающей и рнаспрделительной сети на напряжении 0,38  кв.
Расчет и выбор аппаратов защиты.
5.  Компенсация  реактивной  мощности.   Расчет   и   выбор   конденсаторной
компенсирующей установки.
6. Расчет и выбор числа и  мощности  силового  трансформатора  внутрицеховой
КТП.
7.  Схема электроснабжения на стороне.
8.  Расчет высоковольтной питающей линии.
9. Расчет типов К3. Выбор и  проверка  высоковольтного  эл.оборудования  КТП
на
    стойкость действия токов К3.
10.  Конструктивное исполнение и расчет контура заземления КТП.
   Список литературы.



                                  Введение.

   Данная  работа  является  пояснительной  запиской  к  курсовому  проекту.
Курсовой проект является завершающей самостоятельной работой  учащегося.  Он
показывает его умение использовать на  практике  его  теоретические  знания:
успешному выполнению проекта  способствует  хорошее  усвоение  теоретических
положений по специальным предметам.
   Руководит работой учащегося над курсовым проектом преподаватель,  ведущий
специальные  предметы.  Он  определяет  тему  проекта  и  выдает  задание  с
исходными данными, указывая сроки начала и окончания проекта. Тема  и  объем
задания утверждаются цикловой комиссией спец дисциплин техникума.
    Успешное  завершение   проекта   достигается   систематической   работой
учащегося
по  составленному руководителем  графику  при  постоянных  консультациях  по
отдельным разделам проекта с проверкой у руководителя правильности  принятых
решений. Календарный график на весь период  работы  над  проектом  позволяет
правильно распределить время учащегося, дает возможность контролировать  его
работу и исключает чрезмерную нагрузку в последние ()



|№ по   |             наименование        |      кол-во    |        Рн      |
|плану  |оборудования                     |шт.             |квт             |
|1      |токарно-центровой                |1               |28+1,7+0,125    |
|2      |токарно-центровой                |2               |14+1+0,125      |
|3;4;5;6|токарно-центровой                |4               |10+1+0,125      |
|;      |                                 |                |                |
|7;8    |токарно-центровой                |2               |5,5+1,5         |
|9      |токарно-расточной                |1               |10,0            |
|10     |зубофрейзерный                   |1               |4,5             |
|11     |консольнофрейзерный              |1               |5,5+1,1+0,125   |
|12     |консольнофрейзерный              |1               |10+2,8          |
|13     |консольнофрейзерный              |1               |7+1,7           |
|14     |вертикально-фрейзерный           |1               |5,5+1,1+0,125   |
|15     |широкоуниверсальный              |1               |2,8             |
|16     |широкоуниверсальный              |1               |1,7             |
|17     |радиально-сверлильный            |1               |1,7             |
|18     |вертикально-сверлильный          |1               |4,5             |
|19     |вертикально-сверлильный          |1               |7+0,125         |
|20     |поперечно-строгательный          |1               |4,50            |
|21     |долбежный станок                 |1               |7+1             |
|22     |поперечно-строгательный          |1               |8               |
|23     |универсальный-плосношлифов.      |1               |1,7+1,0+0,18    |
|24     |универсальный кругошлифовальный  |1               |4,5+1,0+1,7+0,76|
|25     |полосношлифовальный              |1               |14+4,5+1,0+0,18 |
|26     |полосношлифовальный              |                |28+4,5+1+1,7+0,6|
|27:37  |обдирочно-точильный              |2               |1.7             |
|28     |обдирочно-точильный              |1               |2,8             |
|29     |заточной                         |1               |17+1+1+0,125    |
|30     |дисковая пила                    |1               |7+1,7+0,125     |
|31     |приводная концовка               |1               |1,7+0,125+0,6   |
|32:35  |сверлильный станок               |4               |7,50            |
|50     |сварочный трансформатор          |5               |                |
|34     |токарно-центровой                |1               |1,7             |
|36     |заточной                         |1               |1,7+0,4         |
|38     |точильный                        |1               |2,7             |
|39     |сушильный шкаф                   |1               |2,9             |
|40     |стенд блансировки                |1               |5,0             |
|42     |шкаф для обуви                   |1               |3,0             |
|41     |стенд для испытания              |1               |10              |
|43     |трубогибочный                    |1               |4,5             |
|44     |зигмашина                        |1               |1,7             |
|45     |машина листосгибочная            |1               |2,8             |
|46     |фальцепрокатный                  |1               |4,5             |
|47     |пневмонический                   |1               |20              |
|48     |пресс                            |1               |2,8+1           |
|49     |электропечь                      |1               |50              |
|51     |прниобразователь сварочный       |1               |10,0            |
|52     |станок для резки                 |1               |9,8             |
|53     |прессножницы                     |1               |3,2             |
|       |                                 |                |                |
|30     |дисковая пила                    |1               |7+1,7+0,125     |
|1      |токарно - центровой станок       |1               |28+1,7+0,125    |
|2      |токарно-центровой станок         |2               |14+1+0,125      |
|3      |токарно-центровой станок         |4               |10+1+0,125      |


                                  Раздел 1.

         Исходные данные для проектирования. Характеристика объекта.

   Тема проекта- электроснабжение ремонтно-механического цеха.
   Цех выполнен из кирпича, стены оштукатурены, побелены,  потолок  перекрыт
пустотелыми плитами,  пол  бетонный,  имеются  двери,  окна  одностворчатые,
грузоподъемники и грузоподъемные механизмы отсутствуют.  Размеры  помещения:
длина -24м, ширина-12м, высота-7м.
   В ремонтно-механическом  цехе  используются  :  дисковая  пила,  токарно-
центровой станок.
   Из этого следует. что основным  потребителем  электроосвещения,  являются
электродвигатели, но  в цехе  есть  и  цепь  освещения,  которая  потребляет
сравнительно малое количество  электроэнергии.  На   территории  предприятия
среда нормальная, отсутствует запыленность и агрессивные  смеси  в  воздухе.
Помещение  не  взрывоопасное,  так  как  на  территории   цеха   отсутствуют
взрывоопасные вещества.
   Цех запитан от существующей ГПП   напряжением  10кв  подведенным  до  КТП
кабельной  линией  длинной  4км   со   II   степенью   надежности.   Силовые
электроприемники  запитываются  от  сети  переменного  тока  частотой   50Гц
напряжением 220В. По заданию курсового проекта  рекомендуется  выбрать:  тип
защитной аппаратуры- предохранители , автоматы, тип источника  света-  лампы
накаливания,   тип   грунта–   чернозем   с   сопротивлением   естественного
заземлителя сопротивлением 10 Ом.



                                  Раздел 2.

    Выбор  схемы  электроснабжения.  Схема  силовой  распределительной  сети
напряжением 0,38кв. Выбор комплектного электрооборудования.

     В  данном  разделе  определяются  и  принимаются  основные  решения  по
курсовому проекту. Питание силовых электроприемников напряжения  до  1000  В
может  осуществляться  по   радиальным   магистральным   и   комбинированным
электросхемам.   При   выборе   схемы   учитывается    единичная    мощность
электроприемников  и  их  размещения,  характер  производства  ,  надежность
электроснабжение, расположение подстанций, конструктивное выполнение сети.
   На участке от ГПП до цеховой  ТП  принимается  радиальная  схема  питания
цеховой КТП. Высоковольтная  линия проложена в земле кабелем марки ААБ .
   В курсовом проекте принимается цеховая КТП с двумя трансформаторами  типа
ТМФ  ,  так  как  цех  имеет  вторую  категорию    по   степени   надежности
электроснабжения КТП устанавливается внутри цеха. Силовой шкаф  запитывается
по радиальной схеме от цеховой КТП.
   Питание приемников электрической энергии выполняется по  смешенной  схеме
проводом марки АПВ в пластмассовых трубах в полу и шинопроводах ШРАМ- 100
с  ответвительной  коробкой  У2890-М43  на   тросу.   Так   же   в   проекте
предусматривается освещение цеха. Принимается осветительный шкаф серии
 ОЩВ-12, который запитывается от цеховой КТП , кабелем по  стене  на  скобах
марки АВВГ. Светильники запитываются по  радиальной  схеме  в  три  ряда  на
троссе кабелем АВВГ.



                                  Раздел3.

   Расчет электрических нагрузок.
   3.1. Расчет  электрических  нагрузок  силового  оборудования  напряжением
0,38 кв.

   При проектировании элекртоснобжения предприятия важным вопросом  является
расчет электрических нагрузок, с учетом  этих  нагрузок  производится  выбор
всех элементов электроснабжения.
   Значение коэффициента мощности и  коэффициента  использования  определяем
по таблице ( 2.с 33).

   Определяем суммарную установочную мощность электроприемников Ру  активные
и реактивные мощности Рсм и Qсм.

                                   Ру=113,3
                                    Рсм=Ки  * Рнт      Рсм=0,17 *
113,3=19,3 квт
                                    Qсм= Рсм *  tg       Qсм=19,3  *
1,17=22,5 квар
   Коэффициент мощности: tg(   - средневзвешенное.
Рассчитываем показатель силовой сборки m=Pн max/Pнmin, где Pн max-  мощность
наименьшего.
      m=29,725/8,825> 3.4>3.

4. Определяем эффективное число эл.приемников

  nэ=n*nэ,    nэ=2Ру/Р макс=2-113,3/29,275=8



Для группы электроприемников определяем максимальные нагрузки:

    Рм=Км ( Рсм=2,31 * 19,3= 44,6 квт;
    Qсм= 1,1 * 22,5= 24,75 при nэ( 10

   Максимальный ток нагрузки Iм=Sм/0,66= 77,2 А.

                3.2 Расчет нагрузок электрического освещения.

   Расчет нагрузок  сети  освещения  сводится  к  определению  установленной
мощности сети электроосвещения. Установленная мощность  определяется,  после
проведения светотехнического расчета.
   Задачей светотехнического расчета является  определение  системы  “  вида
освещения”, выбор типа светильника и  источника  света,  определение  единой
мощности светильника, их количество и размещение их на плане помещения.
   Исходными данными для  проведения  расчета  являются  размеры  помещения:
длина А= 24 м, ширина В= 12 м, высота Н= 7 м.

   По условиям среды и  монтажа  осветительной  сети  принимаем  светильники
типа НСП- 07. С  учетом  внутренней  отделки  принимаются  коэф.  отражения:
потолок  рn= 50% стены рс= 30%, рабочие поверхности Рр= 10%.


    Так  как  по  заданию  светильник  с  лампой  накаливания,   то   принят
коэф.запаса

 Кз= 1,15,  Z=1,15.
   Определяем освещенность: Ен= 150 мк
   Площадь помещения  S=AB; S=24*12=288 м2
   Расчетная высота Нр=Н-( hc-hp)
                                   Hp= 7-(0.5+1)= 5.5м
                          Определяем индекс помещения:

           (=S/Нр(А+В);     (=288/5,5*(12+24=1.45).

    По  полученным  значениям  типа  светильника,  коэф.отрицания,   индекса
опред.коэф.использования  светового  потока  установка    (   =5,5%.   Лампа
накаливания типа Б220-200, Р=2920м.
   Определяем световой поток ряда Ф ряда=Ен*S*Kз*Z/N*(
                  Ен- нормальная освещенность лк;
                 S-площадь м2
                 Кз- коэф.запаса ед: Z-коэф.неравнопарности, ед:
                 N-число установок.
                        Фряда=150*288*1,15*1,15/1*0,55=690,90 мм.
   Определяем количество светильников Ncв=Фряда/Ф1
Nсв=69090/2920=24мм
   Так как  светильник  НСП-07  является  точным  источником  света,  то  он
располагается по всей длине цеха. С  учетом  ширины  помещения  принимаем  3
ряда по 8 светильников в ряду  расстояние  от  крайних  рядов  до  стен  2м,
расстояние между светильниками 2,6м.

                    Определяем установленную мощность сети освещения

Руэо=РnN; Pyэо=0,2*24=4,8квт
                     Установленную мощность ряда
Рр= Рл*Nсв; Рр=0,2*8=1,6квт.
                      Расчетный ток ряда Ip-Pp/ (3Vлcosф
Ip=1,6/1,7*0,38*1=2,5 A
                                 Iур=Ip*1,2   Iур=2,5*1,3=3А

   Выбираем кабель марки АВВГ( 4+6)
   Расчет для дежурного освещения производится аналогично.  При  расчете  по
току нагрузки приняты сечения всех участков 6 мм2.
   Составим расчетную схему сети освещения
              ктп                                   о
                                                               1  2  3  4
5  6  7   8


                                                        що
   Для сетей электрического освещения  производственных  зданий  допускаются
потери (U%  составляют не более 2%.

   Определяем суммарный момент нагрузки одного ряда светильников


                М(=(Р((с-1+(1-8/2);
                 М(=1,6( 16+18,2/2 )=40,16квт

     Определяем расчитаное сечение групповой линии

            Sp=M(/C+(Vn%             C=44
            Sp=40.1,6/4*4*2=0,46 мм2

    Определяем  фактическую  потерю  напряжения  по   стандартному   сечению
проводников Sст=Smin=2,0мм2.

(Uф=М(/С*Sсек        (Uф=40,16/44*2=0,46%
   Фактическая потеря (Uф((U меньше допустимой
т.е. 0,46%<2%, значит выбор проводников правельный.
                                 Составим таблицу.

|               |             |ВН, КВ|НН, LB|      |Хх   |К3  |     |    |
|ТМФ-250        |250          |10    |0,4   |Y/Y-0 |0,74 |3,7 |4,5  |2,3 |


                                  Раздел 7.

                     Схема электроснабжения на стороне.

                                                  Трансформатор.
                                 ST=25 MB*A
                             С                              U=115/6.3 кВ
                                                              Uкз=10,5%

                                                               ЛЭП
Л1                                Л2                      Х0=0,39 Ом/км
                                                               L=100 км

                                                                Система.
                                                                Sc=1000 кВА
                                                                Хкс=0,25
1Т


рис.1 Схема электроснабжения на напряжение 115/10 кВ
                                  Раздел 8.
                    Расчёт высоковольтной питающей линии.

Задачей расчёта является определение марки и сечение кабельной  линии.
                              Порядок расчёта:
Определяем ток нагрузки кабельной линии в нормальном режиме:
Iн= Sнт/(3Uл;
Iн=250/(3*10=14,7А
Экономическое сечение кабеля:
Sэк=Iр/jэк
Iр= Iн=14,7А
Sэк=14,7/1,4=10,5 мм2
Принимаем стандартное сечение кабеля: ААВ (3(16) Sэк=16 мм2
Проверим по нагреву эл. током: (U=(3Iрl(r0cosф+х0sinф)
(U=(3*14,7*1*(2,08*0,57+0,067*0,82)=31,5В
(U%=(U/Uл
(U=31,5/6=5,25=0,052%
Проверка по нагреву в аварийном режиме
Iут(1,3*Iд(А),  Iдоп=75А
Iут(1,3*75=97,5А,
14,7(97,5
Условия выполняются.  Выбранное  сечение  удовлетворяет  условию  по  потере
напряжения и по нагреву эл. током.



                                  Раздел 9.

Расчёт токов к.з. и проверка высоковольтного оборудования КТП  на  стойкость
действию токов к.з.
Задачей расчёта  токов  к.з.  является  определение  действующего  значения,
установившегося тока к.з. (Iк) мгновенного значения тока к.з. ударного  тока
к.з.  (iу).  По    току   Iк   проверяется   оборудование   на   термическую
устойчивость,  по   току   iу   оборудование   проверяют   на   динамическую
устойчивость.
Порядок расчёта.
   1. Составляем расчётную схему, на которой  указывается  система  питания,
      трансформаторы, силовые реакторы, воздушные и кабельные линии.
   2. Составляем схему замещения
   3. Намечаем точки К1,К2,К3. Расчёт токов к.з.  в  точках  производится  в
      относительных единицах.
       Система.
       S=1000 ква
      Хlc=0,25
                                Трансформатор
                                  Sт=25 мВА
                                U=115/6,3 кв
                                                            Uкз=10,5%
                                                                     ЛЭП

                                   Х0=0,39 Ом/км

                                  L=100 км



                                              Расчётная схема
                               С            Система
                                      1
                                              Sl=1000кВА
                                              Хс=0,25
115                                          Трансформатор
                 2                         3
  Л1                           Л2          Sт=25 мВА
                                              U=115/10кв

                                              Uкз=10,5%
                                       4       к1
                             Т1

                                               ЛЭП
                                          5
                                               Х0=0,39 Ом/км
                                             к2
   10,5                         к1        L=100 км


                                                      6        к3
 10,5                              к2



                             Т2

0,4                                  к3

   Задаём базисные знания напряжения:
   Uбi=Uсрн=10,5кв
   Uб2= Uсрн=0,4кв
   Рассчитаем базисные токи
   Iб1=Sб/(3Uбi                         Iбi=100/1.73*10.5=5.6ка

   Iб2=Sб/(3Uб2                       Iбi=100/1.73*0,4=147ка
   Определим сопротивление отдельных элементов расчётной схемы
   Хх1=Ххс=0,25  ЛЭП Хх2=Хх3=Хо*L*Sб/Uср.н2; Хх2=Хх3=0,29
   Трансформатор Хх4=Хт=Uк%/100*Sб/Sт; Хх4=Хт=0,42
   КЛ Хх5=Хкл=Хокл*L*Sб/Uсрн; Хх5=Хкл=0,29
   Ххс=0,01*10,5*100/2,5=0,18

                   Определим результирующее сопротивление
   Х(1=Хх1+Хх2/2+Хх4=0,25+0,22/2+0,42=0,82
     Х(2=Хх1+Хх5=1,11
    Х(3=1,11+0,18=1,28
                            Определяем токи к.з.
   точка к1  I((3)=Iб1/ Х(1=5,6/0,82=6,82 ка
   точка к2  I((3)=Iб1/ Х(2=5,6/1.11=5.05 ка
   точка к3  I((3)=Iб1/ Х(3=147/1,28=114,8 ка
                           Определим ударные токи
   точка к1  iу(3)=(2*ку* I((3)=1,4*1,6*6,82=15,27 ка
   точка к2  iу(3)=(2*ку* I((3)=1,4*1,6*5,05=989 ка
     точка к3  iу(3)=(2*ку* I((3)=1,4*1,6*114,8=160,72 ка
                                Мощность к.з.
точка к1  Sкз=(3Uб1* I((3)=1.73*10.5*6.82=124.03 кВА
точка к2  Sкз=(3Uб2* I((3)=1.73*10.5*5.05=91,73кВА
точка к3  Sкз=(3Uб3* I((3)=1.73*10.5*114,8=79,44кВа


                                                   Таблица 9.1

|Расчётные данные        |Каталожные данные                                |
|                        |РВ=400*10               |ПКТ 101-1031,5-12,5У3   |
|1.Uпс=10кВ              |Uна=10кВ                |Uна=10кВ                |
|2.Iр=13,7 А             |Iна=400 А               |Iна=28,9А               |
|3.iY(3)=11,02 ка        |Iскв=41 ка              |Iоткл=12,5ка            |


                                  Раздел 10

Конструктивное исполнение и расчёт контура заземления КТП

Для защиты людей  от  поражения  электрическим  током  при  прикосновении  к
токоведущим   частям   электрооборудования,   случайно    оказавшихся    под
напряжением  в  установках  380  В  и  выше   должно   применятся   защитное
заземление.
В   проекте   используются   естественные   и   искусственные   заземлители.
сопротивление естественного заземлителя составляет 7Ом.
Согласно ПУЭ сопротивление заземляющего устройства должно быть  не  более  4
Ом при линейном напряжении  380  В,  следовательно  требуется  искусственный
контур заземления. В проекте произведён выбор конструктивного  исполнения  и
расчёт заземляющего устройства.
Порядок расчёта:
   1.  Определим   сопротивление   искусственного   заземлителя   с   учётом
      естественного:
   Ru=Rе*R3/ Rе-R3,  где
   Ru - искусственное заземление
   Rе-величина естественная
     R3-допустимая величина заземления
     Ru=7*4/7-4=9.3ом
Выбор конструктивного исполнения
Заземляющее  устройство  выполняется  в  виде  контура,  расположенного   по
периметру здания подстанции на расстоянии до 1м  от  его  стен.  В  качестве
вертикальных заземлителей используют сталь круглую (12мм и L=5мм.
В  качестве  горизонтального   заземлителя   разрешается   применять   сталь
полосовую, толщиной 4 мм, шириной 40 мм (40(4) на глубине 0,7 м в траншее.
Определим сопротивление первого электрода.
R0в=0,3*р2*Кн
R0в=0,3*0,5*102*1,5=22,5Ом
где  р2- удельная проводимость грунта 0.5*102Ом
В проекте применяется грунт чернозём.
Км- коэффициент сезонности определяется о таблице
№  климатическая   зона,   Км=1,5   дня   для   вертикального   Км=2,3   для
горизонтального заземлителя.
Определяем ориентировочное число вертикального заземлителя.
n=Rов/R3
n=22.5/4=5.6
Суммарное сопротивление всех электродов:
Rв= Rов/n/(e, где
(e- коэффициент использования вертикальных заземлителей  (e=0,74 для
электродов
Rв=22*5/5,6*0,74=5,4Ом
Полное сопротивление заземлителей
Rфз=RеRb/Re+Rb
Rфз=7*5.4/7+5.4=3.07(4Ом
Что удовлетворяет условию Rф(4Ом
Окончательное  заземлительное  устройство  ТП  выполняется  из  вертикальных
заземлителей  длинной  4м.  (12мм  на  расстоянии  друг  от  друга   5   мм,
соединённых между собой стальной полосой 40(длинной 20 м. В  соответствии  с
требованиями  ПУЭ  предусматривается  два  ввода  от  контура  заземления  в
помещении ТП.



                             Список литературы.

   1.Постников Н.П., Рубашов Г.М. Электроснабжение промышленных предприятий.
   Л: Стандарт, 1980.
   2. Липкин Б.Ю. Электроснабжение  промышленных  предприятий  и  установок.
      Высшая школа 1990.
   3. Кноринг Г.М. Справочная книга для проектирования электроосвещения С-П:
      Энергоатом издат 1991
   4. Цигельман И.Е.  Электроснабжение  гражданских  зданий  и  коммунальных
      предприятий: Высшая школа, 1988
   5.  Правила  устройства  электроустановок  6-е  изд.  перераб.   и   доп.
      Энергоатомиздат , 1986
   6. Бондаренко В.П., Коба  Н.Ф.  Справочник  прораба  электромонтажника  ,
      1989.
   7. Барыбина Ю.Г.  справочник  по  проектированию  электрических  сетей  и
      электрооборудования: Энергоатомиздат, 1991.
   8.  Неклипаев  Б.Н.  Электрическая  часть  электростанций  и  подстанций:
      Энергоатомиздат, 1989.



Состав проекта.
КМТЭ КП 001  4.03  77.  Лист  1.  Электроснабжение  РМЦ.  Схема  силового  и
осветительного электрооборудования приведена на плане.

КМТЭ КП 001 4.03 Лист 2. Электроснабжение  РМЦ.  Схема  электрических  общих
соединений.

КМТЭ КП 001 4.03. Пояснительная записка.




ref.by 2006—2022
contextus@mail.ru